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1 Introduction
Recall that the critical group is a group derived from the Laplacian of a graph,
which comes up in several different contexts: for example, the order of the
critical group is the number of spanning trees.

Recall that a Cayley graph is constructed from a group and a set of gener-
ators. The vertices are the elements of the group, and an edge from one vertex
to another correspond to multiplying by a generator from our set.

Our goal was to understand the critical group of the Cayley graph of a
cyclic group with any chosen set of generators. draw example picture. We
will introduce a modified version of the critical group for a graph Γ, which we
will call Crit′(Γ). Then we will prove:

Theorem 1.1. Let Γ be an undirected Cayley graph for the cyclic group Cn =
Z/n, where n is odd. Let M0 be the submodules of Crit′(Γ) which are symmetric
with respect to reflection across the 0th vertex and let M1 be the submodule
symmetric with respect to reflection across the 1st vertex. Then

Crit′(Γ) = M0 ⊕M1.

In particular, the elementary divisors of Crit′(Γ) occur in pairs.

A key point behind this theorem is that undirected Cayley graphs of cyclic
groups have “extra” symmetry: not just the rotational (cyclic) symmetry baked
into them, but reflection symmetry as well. This theorem is not true for directed
Cayley graphs of cyclic groups. Moreover, when n is even, the behavior is slightly
more complicated.

2 The Extended Critical Group
Given a graph with vertex set V and Laplacian ∆, we can consider the group
ZV /∆ZV —the cokernel of ∆ : ZV → ZV . Remember that any element of the
column space of ∆ will have coefficients summing to 0: what that means is
that there will always be a copy of Z inside the cokernel. For example, we can
pick a vertex and consider the “delta function” which is 1 at that vertex and 0
everywhere else.
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We know that Z is going to be there, and it’s not interesting. What is inter-
esting is the torsion part of the cokernel, the critical group, which is everything
else.

(Write: coker ∆ = Z⊕ Crit(Γ))
However, this direct sum decomposition is not unique; for any chosen vertex,

we can make the delta function at that vertex be the generator for the copy of
Z. Thus, this decomposition is not preserved by the symmetry (rotation and
reflection of functions). It requires singling out a vertex, similar to the way that
one must pick a sink vertex for the chip firing model or a boundary vertex in the
network model. To take advantage of the symmetry in more general graphs, we
need to find some other way of eliminating the degenerate piece of the cokernel,
which preserves that symmetry but hopefully isn’t too far off from the original
critical group.

Instead, we define the modified critical group Crit′(Γ) by starting with
coker ∆ and then quotienting out constant functions. Another way of look-
ing at it is that we’re adding the constant functions to the column space of
∆.

With this in mind, we can define a new matrix A = [∆ 1] (note: use different
or explain notation for all-1s vector). The cokernel of this matrix, ZV /A(ZV×Z),
will be exactly Crit′(Γ).

You may recall that the critical group can also be described as the group
of harmonic functions with values in Q/Z, modulo constant functions. Crit′(Γ)
admits a similar description, which we can derive using the Snake Lemma.

Recall that an exact sequence is a sequence of Z-modules (abelian groups)
and maps from each one to the next such that the image of each map is exactly
the kernel of the next one.

[state Snake Lemma]
We’re going to apply the Snake Lemma to this diagram:
[not bothering to type out the diagram, these are only notes]
Now, the kernel of A can be characterized as the set of all functions such

that, when you apply ∆, you get a constant. The components of ∆u must sum
to 0, so over Z or Q, these are just ordinary harmonic functions—and with no
boundary vertices, they have to be constant.

[add Z and Q to sequence]
Similarly, with the addition of the all-1s column, A becomes a surjective

map over Q or Q/Z. So the cokernels are 0.
Remaining in the middle, we have Crit′(Γ) and the kernel of A : (Q/Z)V ×

(Q/Z)→ Q/Z—that is, the Q/Z-valued functions with constant Laplacian.
We can then pull an isomorphism out of this exact sequence: the group

Crit′(Γ) is isomorphic to the group ofQ/Z-valued functions with constant Lapla-
cian, modulo constant functions. Even if you didn’t follow these manipulations,
make sure to remember this part.

Finally, a quick note on the connection between the original critical group
and our modified version. With a bit more diagram chasing, we can show there’s
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an exact sequence

0 Crit(Γ) Crit′(Γ) Z/n 0

In the harmonic function interpretation, we can view this as including the
kernel of ∆ into Crit′(Γ); so Z/n represents the image of ∆ on Crit′(Γ).

A natural next step is to consider when this exact sequence splits—whether
Crit′(Γ) is just a direct sum of Crit(Γ) with something else. Unfortunately, it
doesn’t always, but there are conditions under which we can show it does.

3 Dihedral Symmetry
We recall that the dihedral group Dn is the group of rotation and reflection
symmetries of a regular n-gon in the plane. A group presentation is given by

Dn = 〈r, s : rn = s2 = (rs)2 = 1〉,

where r is rotation by 2π/n and s is reflection across the x-axis.
Let us write the cyclic group Cn as 〈x : xn = 1〉. This is the vertex set of

our graph Γ. The group Dn acts on V = Cn by

r · xj = xj+1, s · xj = x−j .

If N is a Z-module, then Dn acts on NV (functions from V → N) by

g · u(xj) = u(g−1xj) for g ∈ Dn.

If Γ is a Cayley graph of Cn, then Dn acts by graph automorphisms on Γ. This
makes NV a module over the group ring ZDn.

Observation 3.1. We have ∆gu = g∆u for u ∈ NV and g ∈ Dn. As a
consequence, Crit′(Γ) ∼= Ṽ(Γ) are ZDn-modules and they are isomorphic as
ZDn-modules (not just as Z-modules).

Proof. We have ∆g = g∆ because the structure of the graph is invariant under
rotation and reflection (because it is a Cayley graph).

We can make a similar statement with ∆ replaced by the extended matrix
A. Here we let Dn act on ZV ×Z by acting on the first factor through symmetry
and acting trivially on Z (every element of Dn acts as the identity).

To prove Crit′(Γ) ∼= V(Γ), recall our proof that Crit′(Γ) ∼= V(Γ) using the
Snake Lemma. All the maps in the diagrams we used were ZDn-module homo-
morphisms. Thus, the kernels and cokernels of all the maps are ZDn-modules,
and the maps obtained from the Snake Lemma are ZDn-module homomor-
phisms.

Now we are ready to prove our theorem. Here we have

M0 = Fix(s,Crit′(Γ)), M1 = Fix(r2s,Crit′(Γ)).

(Note that s is reflection across 1 = x0, and r2s is reflection across x1.) We’ll
break the proof into two parts: spanning and linear independence.
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Lemma 3.2 (Spanning). Crit′(Γ) = Fix(s,Crit′(Γ)) + Fix(r2s,Crit′(Γ)).

Proof. First, we’ll show that

ZV = Fix(s,ZV ) + Fix(r2s,ZV ).

Let’s temporarily denote

N = Fix(s,ZV ) + Fix(r2s,ZV )

Let δj be the point mass at the jth vertex. Then

δ0 ∈ Fix(s,ZV ), δ1 ∈ Fix(r2s,ZV ).

Next, note that if δj ∈ N , then so are sδj and r2sδj . Indeed, we have

sδj = (δj + sδj)− δj ,

with δj + sδj ∈ Fix(s,ZV ), and similarly,

r2sδj = (δj + r2sδj)− δj .

In particular, we have

δj ∈ N =⇒ sδj ∈ N =⇒ r2s2δj = δj+2 ∈ N.

Hence, we have

δ0 ∈ N, δ1 ∈ N, δj ∈ N =⇒ δj+2 ∈ N.

This implies that all the basis functions δj are in N . Thus, N is all of ZV .
This proves the claim for ZV . To extend it to Crit′(Γ) = ZV / imA, pick an

element [u] = u+ imA ∈ Crit′(Γ). Then

u = u0 + u1,

where u0 ∈ Fix(s,ZV ) and u1 ∈ Fix(r2s,ZV ). Then clearly, [u] = [u0] + [u1]
where [u0] ∈ Fix(s,Crit′(Γ)) and [u1] ∈ Fix(r2s,Crit′(Γ)).

Lemma 3.3 (Independence). If n is odd, then

Fix(s,Crit′(Γ)) ∩ Fix(r2s,Crit′(Γ)) = 0.

Proof. When n is odd, s and r2s will generate all of Dn and hence

Fix(s,Crit′(Γ)) ∩ Fix(r2s,Crit′(Γ)) = Fix(Dn,Crit′(Γ)).

So it suffices to prove that this is zero.
Instead of working directly with Crit′(Γ), we work with the isomorphic mod-

ule Ṽ(Γ), which is V(Γ) modulo constants. Suppose that

[u] ∈ Fix(Dn, Ṽ(Γ)),
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where u ∈ V(Γ) is a representative of the equivalence class mod constants. This
implies that

ru = u+ c,

for some constant c. This implies that

u(xj+1) = u(xj) + c,

so that
u(xj) = a+ jc

for some constant a. Since xn = 1, we must have nc = 1. Since u is reflection
symmetric, we also have

a− jc = u(x−j) = u(xj) = a+ jc,

so that c = −c and 2c = 0. Since n is odd, this means that c = 0. Therefore, u
is constant, and thus [u] = 0.
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